Fachbereich 6 Mathematik/Informatik

Institut für Informatik

Navigation und Suche der Universität Osnabrück



Aktuelle Veranstaltungen

Introductory Course in Analysis & Linear Algebra for Cognitive Science (Weiterer Mitwirkender: Taher Habib)
Dozent:Prof. Dr. phil. Kai-Uwe Kühnberger, Prof. Dr. Gordon Pipa
Veranstaltungstyp:Tutorium (Offizielle Lehrveranstaltungen)
Beschreibung:IMPORTANT: The course-takers need not take both the modules -- Linear Algebra and Analysis -- in order to receive a scheine of 8 ECTS. Participation in just ONE module of choice is also permissible, which would be rewarded with a 4 ECTS scheine upon successful completion of that module.

Topics in Analysis:
1. Intro. to Functions - Trigonometric, Polynomial, Exponential,
Logarithmic, etc.
2. Concepts of Limits and Continuity
3. Intro. to Derivatives (first order, one dimensional)
4. Higher Order Derivatives & Geometry of Curves
5. Intro. to Integrals - methods used in their calculation
6. Intro. to Differential Equations - basic methods to solve
7. Applications to Machine Learning and Neurodynamics

Main Reference Book: George Thomas Jr., Maurice D. Weir, Joe/
R. Hass, Thomas' Calculus, 13th edition

Topics in Linear Algebra:
1. Intro. to Set Theory
2. Intro. to Matrix Algebra & Solving Linear Systems
3. Determinants - properties and applications
4. Intro. to Vectors and 3-D Cartesian Geometry
5. Intro. to Vector Spaces, Eigenvalues and Eigenvectors.
6. Applications to Machine Learning, Neuroinformatics, etc.

Main Reference Book: Bernard Kollman, David Hill, lntroductory
Linear Algebra, 8 or 9th edition
Ort:35/E21: Di. 14:00 - 16:00 (13x), 32/409: Do. 12:00 - 14:00 (12x)
Semester:WS 2019/20
Zeiten:Di. 14:00 - 16:00 (wöchentlich) - Calculus, Ort: 35/E21, Do. 12:00 - 14:00 (wöchentlich) - Linear Algebra, Ort: 32/409
Erster Termin:Di , 29.10.2019 14:00 - 16:00, Ort: 35/E21
Empfohlenes Semester:Open to all Cognitive Science students - Bachelors are welcome too. Medium of Instruction will be English.
Voraussetzungen:High-School Algebra, Cartesian Geometry and some willingness for mathematical formalism.