FB6 Mathematik/Informatik/Physik

Institut für Informatik


Navigation und Suche der Universität Osnabrück


Hauptinhalt

Topinformationen

Education Working Group Remote Sensing and Digital Image Analysis

Prof. Dr. rer. nat. Stefan Kunis

Prof. Dr. rer. nat. Stefan Kunis
© Stefan Kunis

Fachbereich 6: Mathematik/Informatik/Physik
Albrechtstraße 28a
49076 Osnabrück

Raum: 69/209
Tel.: +49 541 969-2538
E-Mail: stefan.kunis@uni-osnabrueck.de


Forschungsschwerpunkte

Fourier-Analysis, schnelle Algorithmen, bildgebende Verfahren


Lebenslauf

seit 10/2010 Professor für angewandte und numerische Analysis
10/09–05/16 Leiter der Arbeitsgruppe Fast Algorithms for Biomedical Imaging, Helmholtz München
04/06–09/10 Wissenschaftlicher Mitarbeiter, Akademischer Rat und Juniorprofessor, TU Chemnitz
09/03-08/06 Promotion zu Nonequispaced FFT - Generalisation and Inversion, Universität Lübeck
10/98-08/03 Studium der Informatik mit Nebenfach Medizinische Informatik, Universität Lübeck


Publikationen

[53] T. Emmrich and S. Kunis. Real and finite field versions of Chebotarev’s theorem. In: arXiv-Preprint (2025). url: https://arxiv.org/abs/2506.02947.

[52] T. Emmrich, M. Juhnke, and S. Kunis. Sparse graph signals—uncertainty principles and recovery. In: GAMM-Mitt. 48.2 (2025). url: https://doi.org/10.1002/gamm.70002.

[51] I. Kovalyov and S. Kunis. Two-dimensional moment problem and Schur algorithm. In: Integral Equations Operator Theory 97.1 (2025). url: https://doi.org/10.1007/s00020-024-02786-3.

[50] T. Emmrich, M. Juhnke, and S. Kunis. Two subspace methods for frequency sparse graph signals. In: Appl. Comput. Harmon. Anal. 74 (2025). url: https://doi.org/10.1016/j.acha.2024.101711.

[49] P. Catala, M. Hockmann, S. Kunis, and M. Wageringel. Approximation and interpolation of singular measures by trigonometric polynomials. In: Constr. Approx. 60.3 (2024). url: https://doi.org/10.1007/s00365-024-09686-0.

[48] M. Hockmann and S. Kunis. Short communication: weak sparse superresolution is well-conditioned. In: SIAM J. Imaging Sci. 16.1 (2023). url: https://doi.org/10.1137/22M1521353.

[47] P. Catala, M. Hockmann, and S. Kunis. Sparse super resolution and its trigonometric approximation in the p-Wasserstein distance. In: PAMM 22.1 (2023). url: https://doi.org/10.1002/pamm.202200125.

[46] T. Emmrich, M. Juhnke-Kubitzke, and S. Kunis. Sparse signals on hypergraphs. In: PAMM 22.1 (2023). url: https://doi.org/10.1002/pamm.202200171.

[45] M. Hockmann, S. Kunis, and R. Kurre. Computational resolution in single molecule localization - impact of noise level and emitter density. In: Biological Chemistry 404.5 (2023). url: https://doi.org/10.1515/hsz-2022-0301.

[44] H. Schäfer, A. Schuster, S. Kunis, T. Bookholt, J. Hardege, K. Rüwe, and J. Brune. The Readiness of Water Molecules to Split into Hydrogen + Oxygen: A Proposed New Aspect of Water Splitting. In: Advanced Materials 35.30 (2023). url: https://doi.org/10.1002/adma.202300099.

[43] S. Kunis, D. Nagel, and A. Strotmann. Multivariate Vandermonde matrices with separated nodes on the unit circle are stable. In: Appl. Comput. Harmon. Anal. 58 (2022). url: https://doi.org/10.1016/j.acha.2022.01.001.

[42] S. Kunis and D. Nagel. On the condition number of Vandermonde matrices with pairs of nearly-colliding nodes. In: Numer. Algorithms 87.1 (2021). url: https://doi.org/10.1007/s11075-020-00974-x.

[41] S. Kunis and J. Rolfes. Another Hilbert inequality and critically separated interpolation nodes. In: PAMM 21.1 (2021). url: https://doi.org/10.1002/pamm.202100219.

[40] M. Hockmann, S. Kunis, and R. Kurre. Towards a mathematical model for single molecule structured illumination microscopy. In: PAMM 20.1 (2021). url: https://doi.org/10.1002/pamm.202000075.

[39] S. Kunis and D. Nagel. On the smallest singular value of multivariate Vandermonde matrices with clustered nodes. In: Linear Algebra Appl. 604 (2020). url: https://doi.org/10.1016/j.laa.2020.06.003.

[38] S. Kunis, T. Römer, and U. von der Ohe. Learning algebraic decompositions using Prony structures. In: Adv. in Appl. Math. 118 (2020). url: https://doi.org/10.1016/j.aam.2020.102044.


[37] S. Kunis, H. M. Möller, and U. von der Ohe. Prony’s method on the sphere. In: SMAI J. Comput. Math. S5 (2019). url: https://doi.org/10.5802/smai-jcm.53.

[36] M. Ehler, S. Kunis, T. Peter, and C. Richter. A randomized multivariate matrix pencil method for superresolution microscopy. In: Electron. Trans. Numer. Anal. 51 (2019). url: https://doi.org/10.1553/etna_vol51s63.

[35] S. Kunis, H. M. Möller, T. Peter, and U. von der Ohe. Prony’s method under an almost sharp multivariate Ingham inequality. In: J. Fourier Anal. Appl. 24.5 (2018). url: https://doi.org/10.1007/s00041-017-9571-5.

[34] S. Kunis, B. Reichenwallner, and M. Reitzner. Random approximation of convex bodies: monotonicity of the volumes of random tetrahedra. In: Discrete Comput. Geom. 59.1 (2018). url: https://doi.org/10.1007/s00454-017-9914-7.

[33] S. Kunis and I. Melzer. Fast evaluation of real and complex exponential sums. In: Electron. Trans. Numer. Anal. 46 (2017). url: https://etna.ricam.oeaw.ac.at/vol.46.2017/pp23-35.dir/pp23-35.pdf.

[32] S. Kunis, T. Peter, T. Römer, and U. von der Ohe. A multivariate generalization of Prony’s method. In: Linear Algebra Appl. 490 (2016). url: https://doi.org/10.1016/j.laa.2015.10.023.

[31] Y. Dong, T. Görner, and S. Kunis. An algorithm for total variation regularized photoacoustic imaging. In: Adv. Comput. Math. 41.2 (2015). url: https://doi.org/10.1007/s10444-014-9364-1.

[30] L. Kämmerer, S. Kunis, I. Melzer, D. Potts, and T. Volkmer. Computational methods for the Fourier analysis of sparse high-dimensional functions. In: Extraction of quantifiable information from complex systems. Vol. 102. Lect. Notes Comput. Sci. Eng. Springer, Cham, 2014. url: https://doi.org/10.1007/978-3-319-08159-5_17.

[29] F. Filbir, S. Kunis, and R. Seyfried. Effective discretization of direct reconstruction schemes for photoacoustic imaging in spherical geometries. In: SIAM J. Numer. Anal. 52.6 (2014). url: https://doi.org/10.1137/130944898.

[28] T. Görner and S. Kunis. Effective discretization of the two-dimensional wave equation. In: PAMM 14.1 (2014). url: https://doi.org/10.1002/pamm.201410454.

[27] M. Ehler and S. Kunis. Phase retrieval using time and Fourier magnitude measurements. In: Proc. 10th International Conference on Sampling Theory and Applications (SAMPTA). 2013. url: https://eurasip.org/Proceedings/Ext/SampTA2013/papers/p564-ehler.pdf.

[26] S. Heider, S. Kunis, D. Potts, and M. Veit. A sparse Prony FFT. In: Proc. 10th International Conference on Sampling Theory and Applications (SAMPTA). 2013. url: https://eurasip.org/Proceedings/Ext/SampTA2013/papers/p572-potts.pdf.

[25] T. Görner, R. Hielscher, and S. Kunis. Efficient and accurate computation of spherical mean values at scattered center points. In: Inverse Probl. Imaging 6.4 (2012). url: https://doi.org/10.3934/ipi.2012.6.645.

[24] S. Kunis and I. Melzer. A stable and accurate butterfly sparse Fourier transform. In: SIAM J. Numer. Anal. 50.3 (2012). url: https://doi.org/10.1137/110839825.

[23] L. Kämmerer, S. Kunis, and D. Potts. Interpolation lattices for hyperbolic cross trigonometric polynomials. In: J. Complexity 28.1 (2012). url: https://doi.org/10.1016/j.jco.2011.05.002.

[22] S. Kunis and S. Kunis. The nonequispaced FFT on graphics processing units. In: PAMM 12.1 (2012). url: https://doi.org/10.1002/pamm.201210003.

[21] L. Kämmerer and S. Kunis. On the stability of the hyperbolic cross discrete Fourier transform. In: Numer. Math. 117.3 (2011). url: https://doi.org/10.1007/s00211-010-0322-7.

[20] M. Döhler, S. Kunis, and D. Potts. Nonequispaced hyperbolic cross fast Fourier transform. In: SIAM J. Numer. Anal. 47.6 (2010). url: https://doi.org/10.1137/090754947.


[19] J. Keiner, S. Kunis, and D. Potts. Using NFFT 3—a software library for various nonequispaced fast Fourier transforms. In: ACM Trans. Math. Software 36.4 (2009). url: https://doi.org/10.1145/1555386.1555388.

[18] M. Bebendorf and S. Kunis. Recompression techniques for adaptive cross approximation. In: J. Integral Equations Appl. 21.3 (2009). url: https://doi.org/10.1216/JIE-2009-21-3-331.

[17] M. Gräf, S. Kunis, and D. Potts. On the computation of nonnegative quadrature weights on the sphere. In: Appl. Comput. Harmon. Anal. 27.1 (2009). url: https://doi.org/10.1016/j.acha.2008.12.003.

[16] A. Böttcher, S. Kunis, and D. Potts. Probabilistic spherical Marcinkiewicz-Zygmund inequalities. In: J. Approx. Theory 157.2 (2009). url: https://doi.org/10.1016/j.jat.2008.07.006.

[15] S. Kunis. A note on stability results for scattered data interpolation on Euclidean spheres. In: Adv. Comput. Math. 30.4 (2009). url: https://doi.org/10.1007/s10444-008-9069-4.

[14] M. Gräf and S. Kunis. Stability results for scattered data interpolation on the rotation group. In: Electron. Trans. Numer. Anal. 31 (2008). url: https://etna.ricam.oeaw.ac.at/vol.31.2008/pp30-39.dir/pp30-39.pdf.

[13] S. Kunis and H. Rauhut. Random sampling of sparse trigonometric polynomials. II. Orthogonal matching pursuit versus basis pursuit. In: Found. Comput. Math. 8.6 (2008). url: https://doi.org/10.1007/s10208-007-9005-x.

[12] S. Kunis and D. Potts. Time and memory requirements of the nonequispaced FFT. In: Sampl. Theory Signal Image Process. 7.1 (2008). url: https://doi.org/10.1007/BF03549487.

[11] S. Kunis. Nonequispaced fast Fourier transforms without oversampling. In: PAMM 8.1 (2008). url: https://doi.org/10.1002/pamm.200810977.

[10] S. Kunis and D. Potts. Stability results for scattered data interpolation by trigonometric polynomials. In: SIAM J. Sci. Comput. 29.4 (2007). url: https://doi.org/10.1137/060665075.

[9] J. Keiner, S. Kunis, and D. Potts. Efficient reconstruction of functions on the sphere from scattered data. In: J. Fourier Anal. Appl. 13.4 (2007). url: https://doi.org/10.1007/s00041-006-6915-y.

[8] M. Fenn, S. Kunis, and D. Potts. On the computation of the polar FFT. In: Appl. Comput. Harmon. Anal. 22.2 (2007). url: https://doi.org/10.1016/j.acha.2006.05.009.

[7] J. Keiner, S. Kunis, and D. Potts. Efficient reconstruction of functions on the sphere from scattered data. In: PAMM 7.1 (2007). url: https://doi.org/10.1002/pamm.200700924.

[6] T. Knopp, S. Kunis, and D. Potts. A Note on the Iterative MRI Reconstruction from Nonuniform k-Space Data. In: International Journal of Biomedical Imaging 2007.1 (2007). url: https://doi.org/10.1155/2007/24727.

[5] S. Kunis, D. Potts, and G. Steidl. Fast Gauss transforms with complex parameters using NFFTs. In: J. Numer. Math. 14.4 (2006). url: https://doi.org/10.1163/156939506779874626.

[4] J. Keiner, S. Kunis, and D. Potts. Fast summation of radial functions on the sphere. In: Computing 78.1 (2006). url: https://doi.org/10.1007/s00607-006-0169-z.

[3] M. Fenn, S. Kunis, and D. Potts. Fast evaluation of trigonometric polynomials from hyperbolic crosses. In: Numer. Algorithms 41.4 (2006). url: https://doi.org/10.1007/s11075-006-9017-7.

[2] S. Kunis. Nonequispaced FFT. Generalisation and Inversion. Dissertation. Univ. Lübeck, 2006. url: https://zbmath.org/1111.65116.

[1] S. Kunis and D. Potts. Fast spherical Fourier algorithms. In: J. Comput. Appl. Math. 161.1 (2003). url: https://doi.org/10.1016/S0377-0427(03)00546-6.


Lehre


Wintersemester 2026/27

Sommersemester 2026

Sommersemester 2025


Lebenslauf

seit 10/2010 Professor für angewandte und numerische Analysis